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Abstract: A passive local eavesdropper can leverage
Website Fingerprinting (WF) to deanonymize the web
browsing activity of Tor users. The value of timing in-
formation to WF has often been discounted in recent
works due to the volatility of low-level timing informa-
tion. In this paper, we more carefully examine the extent
to which packet timing can be used to facilitate WF
attacks. We first propose a new set of timing-related
features based on burst-level characteristics to further
identify more ways that timing patterns could be used
by classifiers to identify sites. Then we evaluate the ef-
fectiveness of both raw timing and directional timing
which is a combination of raw timing and direction in a
deep-learning-based WF attack. Our closed-world eval-
uation shows that directional timing performs best in
most of the settings we explored, achieving: (i) 98.4% in
undefended Tor traffic; (ii) 93.5% on WTF-PAD traffic,
several points higher than when only directional infor-
mation is used; and (iii) 64.7% against onion sites, 12%
higher than using only direction. Further evaluations in
the open-world setting show small increases in both pre-
cision (+2%) and recall (+6%) with directional-timing
on WTF-PAD traffic. To further investigate the value of
timing information, we perform an information leakage
analysis on our proposed handcrafted features. Our re-
sults show that while timing features leak less informa-
tion than directional features, the information contained
in each feature is mutually exclusive to one another and
can thus improve the robustness of a classifier.
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1 Introduction

Fig. 1. Website fingerprinting threat model.

With over eight million daily users [22], Tor is one
of the most popular technologies to protect users’ on-
line privacy. As shown in Figure 1, Tor provides this
protection by creating an encrypted circuit from the
client across three nodes, which relay encrypted traffic
between the client and server, typically a website. In
this design, no single Tor node or eavesdropper should
be able to link the user’s identity (i.e. IP address and
location) with the websites she visits.

Unfortunately, prior work has shown that Tor is
prone to a class of traffic analysis attacks called web-
site fingerprinting (WF) [4, 12, 26, 29, 30, 32, 33, 35].
The WF attack allows an adversary to learn informa-
tion about the client’s online activities, even though
the traffic is encrypted. To perform the attack, a pas-
sive local eavesdropper collects side-channel information
from the network traffic between the client and entry
node, as shown in Figure 1. From the collected traf-
fic, the attacker then extracts various features, such as
packet statistics or traffic burst patterns, and feeds this
information into a machine learning classifier to iden-
tify which website the client has visited. Prior work has
shown that this kind of attack is very effective, reaching
up to 98% accuracy [32].
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Fig. 2. A visualization of bursts, with five outgoing bursts
interspersed with five incoming bursts.

In response, the Tor Project community has become
greatly concerned with designing new effective defenses
against these WF attacks [28, 29]. The state-of-the-art
attacks emphasize bursts as powerful features used to
classify the encrypted traces. Bursts are groups of con-
secutive packets going in the same direction, either out-
going from the client to the web server or incoming from
the server to the client (see Figure 2). Thus, most WF
defenses primarily seek to obscure these burst patterns.

This approach, however, leaves the timing of pack-
ets as a largely unprotected source of information for
WF attacks to exploit. Moreover, prior work in WF of-
ten discounted timing as being not a serious threat [37],
or found that the contribution of timing was not signif-
icant enough when compared to other features to war-
rant its use [12]. The intuitive explanation for this comes
from the fact that timing characteristics are subject to
high levels of noise due to many factors, such as varying
bandwidth capacity on different circuits. Thus, it ap-
pears to be difficult to extract consistent patterns from
packet timing that can be used effectively to train WF
classifiers. In this work, we investigate new ways tim-
ing information can be used in WF attacks, and we find
that timing offers significant value to classification.

The key contributions of our work are as follows:
– We develop new burst-level timing features and com-

pare them to prior handcrafted features using the
WeFDE [21] information leakage analysis frame-
work. We show that these features are relatively dis-
tinct from previously studied features and contribute
to the robustness of the classifier.

– We propose the use of a new data representation
for the Deep Fingerprinting (DF) [32] attack and in-
vestigate its effects. This new representation, which
we refer to as the Tik-Tok attack, achieves modest
accuracy improvement over direction-only informa-
tion in several settings. In particular, we reduce the
classification error from 9% to 6.5% for WTF-PAD
by using Tik-Tok. Similar performance improvement
is seen in the open-world setting for WTF-PAD in
which precision and recall are respectively improved
to 0.979 and 0.745 for Tik-Tok when tuned for pre-
cision.

– We perform the first investigation of the perfor-
mance of deep-learning classifiers on onion services,
finding that the DF attack gets only 53% accuracy,
whereas raw timing gets 66%.

– Finally, we develop the first full implementation of
the Walkie-Talkie (W-T) defense [37] in Tor and use
it to evaluate our timing-based attacks. We find that
our W-T implementation is largely resistant to these
attacks despite the fact that the defense was not de-
signed to manipulate timing information. We further
discuss our experiences implementing W-T on the
live Tor network in the Appendix.

Overall, we find that burst-level timing information can
be effectively used as an additional data representation
to create an effective WF attack. Moreover, using timing
along with packet direction further improves the perfor-
mance of the attack, especially in the open world. These
results indicate that developers of WF defenses need to
pay more attention to burst-level timing features as an-
other fingerprintable attribute of users’ traffic.

2 Threat Model
In this work, we follow a WF threat model that
has been frequently applied in the literature [9, 11–
13, 26, 30, 32, 33, 35, 36]. We assume that the attacker is
a local and passive network-level adversary. By local, we
mean that the adversary can be anyone who can access
the encrypted streams between the client and the guard,
as illustrated in Figure 1. This could be an eavesdropper
who can intercept the user’s wireless connections, the
user’s Internet service provider (ISP), or any network
on the path between the ISP and the guard. By pas-
sive, we mean limiting the capability of the attacker to
only record the encrypted traffic but not delay, drop, or
modify it. We also assume that a WF attacker does not
have the capability to decrypt the collected encrypted
traffic.

In a WF attack, the adversary needs to first train
the WF classifier. To do this, she selects a set of sites
that she is interested in classifying and uses Tor to visit
these sites a number of times, capturing the network
trace of each visit as a sample for that site. From this
dataset, she extracts meaningful features and uses them
to train the classifier. Once the classifier is trained, she
can perform the attack. She intercepts the user’s en-
crypted traffic stream, extracts the same features as
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used in training, and applies the classifier on those fea-
tures to predict the user’s website.

Due to the requirement of gathering samples of each
site of interest, it is impossible to train the classifier
to recognize all possible websites the user might visit.
The attacker thus trains the classifier on a limited set
of websites called the monitored set. All other websites
form the unmonitored set.

Based on these two sets, researchers have developed
two different settings in which to evaluate the perfor-
mance of the attack: closed-world and open-world. In
the closed-world setting, the user is restricted to visit-
ing only websites in the monitored set. This assump-
tion is generally unrealistic [15, 29], but it is useful for
evaluating the quality of machine learning (ML) mod-
els and potential defenses. In the more realistic open-
world setting, the user may visit any website, including
both monitored and unmonitored sites. This setting is
more challenging for the adversary, as she must deter-
mine both whether the user is visiting one of the mon-
itored sites and, if so, which one. Since it is difficult to
produce a dataset covering the entire web, researchers
model the open-world setting by using a dataset with
samples from many more unmonitored sites than the
number of sites in the monitored set. Evaluation in the
open-world setting provides more realistic assessments
of the effectiveness of both attacks and defenses.

3 Background and Related Work

3.1 WF Attacks using Hand-crafted
Features

Many prior WF attacks apply machine learning (ML)
with hand-crafted features. In these attacks, the adver-
sary has to perform feature engineering, which is the
process of designing a set of effective features that can
be used to train the classifier.

Many WF attacks on HTTPS rely on packet
size [13, 23], but this is ineffective against Tor, which
has fixed-sized cells. Some early WF attacks attempted
to use timing information, but with limited success. In
2005, Bissias et al. [6] proposed an attack using inter-
packet delays averaged over the training set as a profile
of that site. The attack is not very effective and was not
tested on Tor traffic. In our work, we propose timing
features based on bursts of traffic instead of individual
packet times.

Panchenko et al. propose an attack with a number
of features based on packet volume and packet direc-
tion [27]. They used a support vector machine (SVM)
classifier and achieved 55% accuracy against Tor. Al-
though the paper mentions the use of timing informa-
tion, none of the features are based on timing, and
packet frequency was mentioned as not improving their
classification results. Cai et al. proposed an effective
(but computationally expensive) attack using no timing
information but only the direction of each packet [9].

WF attacks using hand-crafted features have since
been improved using better feature sets and different
machine learning algorithms. Four such attacks could
attain over 90% accuracy and have been used as bench-
marks for the subsequent research in WF attacks and
defenses. In the first part of our work, we have com-
pared with these attacks to evaluate the utility of our
new timing-based features.

k−NN. Wang et al. propose an attack using a k-nearest
neighbor (k-NN) classifier on a large and varied feature
set [35]. In a closed-world setting of 100 websites, they
achieved over 90% accuracy. This attack was the first
to use a diverse set of features (bursts, packet ordering,
concentration of the packets, number of incoming and
outgoing packets, etc.) from the traffic information in a
WF attack on Tor. A key set of features they identified
is based on the pattern of bursts, while the only timing-
related feature is total transmission time.

CUMUL. Using a relatively simple feature set based
on packet size, packet ordering, and packet direction,
Panchenko et al. propose an attack using the SVM clas-
sifier [26]. This simple feature set, which did not include
timing information, proved effective, with 92% accuracy
in the closed-world setting.

k−FP. Hayes et al. propose the k−fingerprinting (k-
FP) attack, which uses random decision forests (RDFs)
to rank the features before performing classification
with k-NN [12]. This attack also achieved over 90% ac-
curacy in the closed-world setting. Unlike the k-NN and
CUMUL, their work did study timing features. They
found that statistics on packets per second, e.g. the max-
imum number of packets sent in one second, were mod-
erately helpful features in classifying sites. One such fea-
ture ranked ninth among all 150 features, with a fairly
large feature importance score of 0.28, while most of the
features ranked between 38 and 50 with feature impor-
tance scores of 0.07 and below. Statistics on inter-packet
delays were also ranked relatively low, between 40-70.
In our work, we explore a novel set of timing features
based on bursts of traffic instead of fixed time intervals
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or individual packets. We also use histograms to capture
a broader statistical profile than the maximum, min-
imum, standard deviation, and quartile statistics pri-
marily used by Hayes et al.

Wfin Yan and Kaur recently released a large set of
35,000 features in theirWfin attack [38, 39]. Their study
evaluated the significance of features in seven distinct
WF scenarios, of which two of these scenarios model un-
defended and defended Tor traffic.Wfin achieved 96.8%
accuracy against undefended Tor and 95.4% with Tor-
like traffic defended by sending packets at fixed in-
tervals. When the authors investigated the importance
ranking of their features, several timing-based features
appeared in the top 30 (six timing features between
#11-30). Similar to Hayes et al., their timing features
focus mostly on packets per second either across the
entire trace or in the first 20 packets.

3.2 WF Attacks using Deep Learning

Deep learning (DL) has recently become the default
technique in many domains such as image recognition
and speech recognition due to its effectiveness [20]. Its
performance, especially in image recognition [17, 18],
has motivated other research communities to adopt DL
to improve classification performance in their work. In
WF, five works have examined the use of DL classifiers
for attacks, of which only one uses timing information.

SDAE. Abe and Goto were the first to explore DL in
traffic analysis [4]. They propose a Stacked Denoising
Autoencoder (SDAE) for their classifier and a simple
input data representation (which we call direction-only)
composed of a sequence of 1 for each outgoing packet
and -1 for each incoming packet, ordered according to
the traffic trace. After the final packet of a trace, the
sequence was padded to a fixed length with 0s. In the
closed-world setting, using Wang et al.’s dataset (100
instances per site) [35], they achieved 88% accuracy.

Automated WF. Rimmer et al. [30] study three DL
models – SDAE, Convolutional Neural Network (CNN),
and Long-Short Term Memory (LSTM) – and compare
them with CUMUL. The attacks were trained with a
very large dataset with 900 websites and 2500 traces for
each site, using the direction-only data representation.
The results show that SDAE, CNN and CUMUL all
achieve 95-97% accuracy in the closed-world setting.

DF. Sirinam et al. propose the Deep Fingerprinting
(DF) attack, which utilizes a deeper and more sophisti-
cated CNN architecture than the one studied by Rim-

mer et al. [32]. They evaluated their model with a
dataset containing 95 websites and 1000 traces each,
again with the simple direction-only data representa-
tion. In the closed-world setting, the DF attack attains
98% accuracy, which is higher than other state-of-the-
art WF attacks. Moreover, they also evaluated the per-
formance of their attack against two lightweight WF de-
fenses, WTF-PAD and Walkie-Talkie. The results show
that the DF attack achieves over 90% accuracy against
WTF-PAD, the defense that is the main candidate to be
deployed in Tor. On Walkie-Talkie, the attack achieved
49.7% accuracy and a top-2 accuracy of 98.4%.

Var-CNN. Simultaneous with the main studies we
present in this paper, Bhat et al. propose a novel DL-
based attack with architecture more tailored to the WF
problem than the DF architecture [5]. Much like our
work, they find that using just timing information (raw
timestamps) can make for an effective WF attack on its
own. To use timing and direction together, they propose
an ensemble approach and find it to be very effective,
outperforming both DF and their best direction-only
and timing-only attacks. We do not directly compare
our models with theirs, as we were not able to obtain
their code before conducting our study.

p-FP. Oh et al., much like the work of Rimmer et al.,
explore several different DL architectures in their WF
study [24]. Although they examine numerous scenarios,
such as search query fingerprinting and WF against TLS
proxies, they do not use timing information and their
classifiers do not outperform DF in most settings. Thus,
we do not compare with their work.

3.3 Onion Sites

An onion service, formerly known as a hidden service,
protects the identity of a website (an onion site) or other
server by making it accessible only through special Tor
connections. A client who has the onion service’s .onion
URL builds a Tor circuit and requests to Tor to connect
to the service. The client’s circuit is then linked up with
another Tor circuit that leads to the service itself. Onion
services provide various kinds of functions such as web
publishing, messaging, and chat [2].

Onion sites may be fingerprinted more readily than
regular sites. Kwon et al. show that onion sites’ traf-
fic can be discriminated from regular websites with
more than 90% accuracy [19]. Moreover, Hayes and
Danezis [12] find that the onion sites can be distin-
guished from other regular web pages with 85% true
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positive rate and only 0.02% false positive from a
dataset of 100,000 sites. Therefore, the adversary can
effectively filter out the onion sites’ traffic from the rest
of the Tor traffic and apply WF attacks to determine
which onion site is being visited. Since the number of
onion sites is on the order of thousands, much smaller
than the number of regular sites, the WF attacker only
has to deal with a fairly small open world once she de-
termines that the client is visiting an onion site. Since
a smaller open world makes the attack easier, WF at-
tacks on onion sites are more dangerous compared to
fingerprinting regular websites.

In 2017, Overdorf et al. [25] collected a large dataset
of onion sites, consisting of 538 sites with 77 instances
each. They evaluated the k-NN, CUMUL, and k-FP at-
tacks on their dataset and examined the features that
are significant for fingerprinting each site. Among tim-
ing features, packets per second was helpful for distin-
guishing between the smallest 10% of onion sites. Any
further discussion of timing features was limited.

Recently, Jansen et al. [14] demonstrated how to
perform an effective WF attack from middle relays.
They attain up to 63% accuracy with the CUMUL at-
tack in a closed world of 1,000 onion sites.

In our paper, we explore the effectiveness of new
burst-level timing features for fingerprinting onion sites.
Additionally, we are the first to examine the effective-
ness of applying more powerful DL-based attacks, both
with and without timing information, to fingerprinting
onion sites.

3.4 WF Defenses

In our work, we explore the effectiveness of WF at-
tacks against the state-of-the-art defenses that have
been shown to be effective with low bandwidth and la-
tency overheads, namely WTF-PAD and Walkie-Talkie.

WTF-PAD. Juarez et al. proposed WTF-PAD [16],
an extension of the adaptive padding technique that was
originally proposed to defend against end-to-end timing
attacks [31]. WTF-PAD detects large delays between
consecutive bursts and adds dummy packets to fill the
gaps. The defense requires 54% bandwidth overhead,
though it does not directly add any delays to real traf-
fic, and can reduce the accuracy of the k-NN attack to
below 20%. Sirinam et al., however, show that several
other attacks including DF (90% closed-world accuracy)
and k-FP (69%) perform much better against WTF-
PAD [32]. In this paper, we study how timing informa-

tion can be used to further improve attack performance
against WTF-PAD.

Walkie-Talkie. Wang and Goldberg [37] propose the
Walkie-Talkie (W-T) defense, which aims to make two
or more websites look exactly the same to an attacker.
First, W-T modifies the browser to use half-duplex com-
munication, in which the browser requests a single ob-
ject at a time from the server. This creates a more
reliable sequence of bursts compared with typical full-
duplex communication, in which the browser makes mul-
tiple requests and then receives multiple replies. Given
each site’s expected traffic trace through a half-duplex
connection, which is expressed as a sequence of burst
sizes, W-T creates a supersequence of the two sites – a
sequence of the maximum of the burst sizes from each
site. Then, when the user visits either site, W-T will
add padding packets to make the site’s burst sequence
match the supersequence.In theory, this ensures that
both sites have the same traffic patterns and cannot
be distinguished, guaranteeing a maximum attack accu-
racy of 50%. Wang and Goldberg report high effective-
ness against attacks, along with reasonable overheads:
31% bandwidth and 34% latency. Sirinam et al. also re-
port under 50% accuracy for DF against W-T [32]. Both
works, however, applied padding in simulation to W-T
traces previously collected from a modified Tor client.

In this paper, we examine the effectiveness of this
defense more carefully with the first experiments on a
full implementation of W-T including padding. Since
W-T does not attempt to defend packet timing infor-
mation, it is interesting to explore the effectiveness of
timing features in attacks on it. Also, based on our ex-
periences building W-T, we report on major challenges
in designing and practically deploying W-T.

Fixed-Rate Padding. Another class of WF de-
fenses uses fixed-rate packet transmission, including Bu-
FLO [11], CS-BuFLO [7] and Tamaraw [8]. In these de-
fenses, packets are sent at the same rate throughout the
duration of the connection, which completely hides tim-
ing patterns and low-level burst activity. The only re-
maining information for the WF adversary is the overall
size of the page, which is also partially masked. Unsur-
prisingly, these defenses have proven effective against
all known attacks, but also suffer from bandwidth and
latency overheads range from 100% to 300%, which is
considered too costly for deployment in Tor. In this pa-
per, we do not evaluate against this class of defenses,
assuming that timing information would be of no bene-
fit to the classifier’s performance.
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4 Representing Timing
Information

4.1 Timing Features

Even though the most effective WF attacks use deep
learning to automatically extract features instead of
manually craft them [30], manually crafted features are
still important for interpretable machine learning [10].
In WF, finding and evaluating manually designed fea-
tures can help in understanding why some sites may be
especially vulnerable [25] and how to design more effec-
tive and efficient defenses. We thus explore new timing
features in this work.

Prior work has explored using low-level timing fea-
tures such as inter-packet delay [6] and second-by-
second packet counts [12], which are not consistent
from one instance of a website to another. Hayes et
al. compensate for this by using only high-level aggre-
gate statistics such as the mean or maximum [12]. We
propose a novel set of timing features based on traffic
bursts. By using bursts, which are seen as important
features in WF [12, 37], we capture more consistent and
reliable information than the low-level features stud-
ied previously. Additionally, we employ histograms to
capture a range of statistics on these burst-level tim-
ing data, to get more granular information than simple
high-level statistics.

Fig. 3. Example of four bursts of traffic (B1, B2, B3, and B4),
showing packet directions and timestamps.

4.1.1 Burst-Level Features

To better describe our burst-level features, we will use
a simple example of four bursts shown in Figure 3; out-
going packets are labeled with "+1" and incoming with
"−1". Three of our features are focused on the timing
of packets inside a single burst. The other five features
consider two consecutive bursts.

Median Packet Time (MED). The MED feature
represents the median of the timestamps of each burst.
For B1 in Figure 3:
– Take the burst’s timestamps. B1: [0.0, 0.10, 0.20].

Fig. 4. Interval between the Medians of Two Consecutive Bursts:
B1 : B2, B2 : B3, and B3 : B4.

– Compute the median. B1: [0.10].
Variance. This feature represents the variance of times
within a burst. For B1, we get 0.0067.

Burst Length. For this feature, we simply compute
the difference between the first and last timestamps in
the burst. for B1: 0.20− 0.0 = 0.2.

IMD. The extraction process of Inter Median Delay
(IMD), the interval between the medians of two consec-
utive bursts, is depicted in Figure 4. For B1 and B2:
– Compute the medians of each burst as described for

computing MED. For B1 and B2, we get 0.10 and
0.50, respectively.

– Take the difference between two consecutive bursts’
medians. For B1 and B2: 0.50− 0.10 = 0.40.

IBD-FF. IBD stands for Inter-Burst Delay. IBD-FF is
the interval between the first packets of two consecutive
bursts. For B1 and B2: 0.40− 0.00 = 0.40.

IBD-LF. This feature is the interval between the last
packet of one burst and the first packet of the subse-
quent burst. For B1 and B2, we get 0.40− 0.20 = 0.20.

IBD-IFF. Similar to IBD-FF, but applied to two con-
secutive incoming bursts. B2 and B4 are the two incom-
ing bursts in our example, so we get 0.75− 0.40 = 0.35.

IBD-OFF. Similar to IBD-IFF, but for outgoing
bursts. B1 and B3 are the two outgoing bursts in our
example, so we get 0.65− 0.00 = 0.65.

4.1.2 Histogram Construction

To create features that would be robust to changes from
instance to instance, we further process the extracted
timing features by constructing histograms. Just as hav-
ing quartiles provides more information than just the
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Table 1. Selecting the number of bins b.

Dataset Number of Bins Tested Selected

Undefended
b=5i for i ∈ [1,10]

i = 4 (b = 20)
WTF-PAD
Walkie-Talkie
Onion Sites b=5i for i ∈ [1,5]

median, histograms allow us to capture a broader range
of statistics for each feature. Our feature processing op-
erates in two phases: (1) produce a global distribution
for each feature, and (2) use these global distributions
to populate the final feature sets for each instance.

Global Distributions. To compute the global distri-
bution for each of our eight features, we begin by com-
puting the raw values of that feature for all instances
of every site. We then merge the raw data into a single
array, which we sort. This array represents the global
distribution for its respective feature. For each feature’s
global distribution, we then split the data into a his-
togram with b bins, such that each bin has an equal
number of items. The lowest value and highest value in
each bin then forms a range for that bin.

We note that the width of each bin is not constant.
For example, considering the MED feature, which rep-
resents the median of each burst, there may be many
bursts early in the trace. The range for the first bin is
thus likely to be quite narrow, going from 0 up to a small
value. In contrast, the last bin is likely to have a very
wide range. We will use the ranges of the bins when we
generate the final feature sets for each instance. In our
evaluations, we compute these global distributions sep-
arately for our training, validation, and testing datasets
so as to accurately model the attacker’s capabilities.

Feature Sets. Given the histograms created from the
global distribution, we generate a set of features for each
instance. For each of our eight extracted feature sets,
we create new histograms of b bins. The range for each
bin is given by the bin ranges of the global distribution
histograms. The value in each bin is normalized to the
range 0 to 1, and this is then a feature used in classi-
fication. The full feature set F then includes |F | = 8b

features, b for each of the eight timing feature types.

Tuning. The number of bins b is a tunable parameter.
Using many bins (large b) provides more fine-grained
features, but it can lead to instability between instances
of the same site. Using fewer bins (small b) is likely to
provide consistent results between instances of the same
site, but it does not provide as much detail for distin-

guishing between sites. We thus explore the variation in
classification accuracy for varying values of b. We show
the search range in Table 1. Based on our results, we
selected b = 20 for all of our datasets.

4.2 Raw Timing Information

To better separate out the importance of timing infor-
mation from directional information, we investigate the
classification performance of using the raw timestamps
of all packets in the traffic trace. We represent raw tim-
ing information as a 1D vector of timestamp values, with
a maximum length of 5000, as used for direction-only
data in prior work [32]. An instance with fewer than
5000 packets is padded with zeroes.

4.3 Combining Timing and Direction
Information

Perhaps the most intuitive way to leverage timing infor-
mation is to combine it together with directional infor-
mation and thereby take advantage of both information
sources in classification. We call this directional timing.
Since direction-only represents outgoing packets with
+1 and incoming packets with −1, we propose a direc-
tional timing representation generated by simply multi-
plying the time stamp of each packet by its directional
representation. We call the use of directional timing in
the DF classifier as the “Tik-Tok attack.”

5 Datasets

5.1 Undefended, WTF-PAD,
Walkie-Talkie, & the Onion Sites

For undefended and defended (WTF-PAD & W-T) traf-
fic, we use the datasets developed by Sirinam et al. [32].
For Onion Sites, we use the dataset developed by Over-
dorf et al. [25]. The number of sites and the number of
instances of each dataset are shown in Table 2.

5.2 Real-world Walkie-Talkie

The way in which fake timestamps are generated for
the padding packets in the simulated W-T dataset is
essentially arbitrary and unlikely to be representative
of real-world behavior. Consequently, the performance
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Table 2. Number of Classes and Instances in each Dataset.

Dataset Classes Instances/Class Total
Undefended [32] 95 1000 95,000
WTF-PAD [32] 95 1000 95,000
Walkie-Talkie (sim.) [32] 100 900 90,000
Walkie-Talkie (real) 100 750 75,000
Onion Sites [25] 538 77 41,426

Fig. 5. Real-world W-T Website Pairing Strategy.

of timing-based attacks on this dataset is not likely to
be accurate. To address this, we created the first W-T
dataset collected over the live Tor network. We imple-
mented the W-T burst molding algorithm as a Plug-
gable Transport running on private Tor bridges. We
collected a dataset containing 100 sensitive sites paired
randomly with 10,000 nonsensitive sites (see Figure 5).
Each instance of a site represents one such pairing.

Unlike prior W-T datasets, our sensitive sites are
not statically paired with only one nonsensitive site.
This mimics a realistic attack scenario, since in the real
world, each user would have different pairings of sites,
and the attacker would not know which pairings a given
user is applying. As a consequence of this collection
scheme, one half of the dataset (32,500) represents in-
stances of the client visiting a sensitive site paired with
a nonsensitive site, while the other half represents the
reverse pairing (a nonsensitive site paired with a sen-
sitive one). Additional details of our W-T prototype,
as well as discussion of our experiences with W-T, are
presented in the Appendix.

6 Experimental Evaluation

6.1 Model Selection

Models for Manually Defined Features. To se-
lect an effective model to study our proposed timing
features, we performed experimental evaluations with

models used in previous WF attacks: k-NN [35] and
SVM [26]. We show the performance of our custom tim-
ing features in Section 6.3.

In addition, we use the state-of-the-art Deep Fin-
gerprinting (DF) model [32] for our experiments with
direction-only, our timing features (Section 6.3), raw
timing information (Section 6.6), and directional tim-
ing (Section 6.7).

DF Model Architecture. The DF model has eight
convolutional layers and three dense layers. The last
dense layer is the classification layer that returns the
probability of each class using softmax regression. Batch
normalization is used as the regularizer for both the
convolutional layers and the first two dense layers. The
model applies max pooling and a dropout rate of 0.1
after each of the two convolutional layers. The first two
dense layers also use dropout, with respective dropout
rates of 0.70 and 0.50. The model uses both exponential
linear unit (ELU) and ReLU activation functions. ReLU
is used in most of the layers, but since directional infor-
mation includes many negative values, ELU is used for
the first two convolutional layers. The default number
of epochs of the model is 30. For more details, please
refer the original paper by Sirinam et al. [32].

For experiments with direction-only data, we repro-
duced the results reported by Sirinam et al. [32], keep-
ing all the hyperparameters the same. For experiments
with timing features or directional timing, we do not
change any hyperparameters. When training, however,
we increase the number of epochs from 30 to 100 for
the experiments with timing features and for all exper-
iments on onion services. With timing features, there
are 160 features per site, which requires more training
to find patterns effectively. For the Onion Sites dataset,
there are only 77 instances per site, so more epochs are
needed to get the same amount of training.

For the experiments with raw timing data, we made
three changes to the hyperparameters: (i) We reduced
the dropout rate to 0.40 for both dense layers, which
increased the model’s performance; (ii) we use the ReLU
activation function for the first two convolutional layers
instead of ELU, since ReLU is more effective and raw
timing includes no negative values; and (iii) we do not
use batch normalization in any of the layers.

6.2 Splitting Data based on Circuits

In studying timing characteristics in WF, it is important
to model an attacker accurately. One aspect of this is
that the attacker should not have access to the same
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Fig. 6. Information leakage for individual features.

Fig. 7. Feature clustering analysis.

duce an estimate of the information leakage due to each
feature. The mutual information analyzer is instead re-
sponsible for producing metrics describing the amount
of shared information, i.e. redundancy, that features
have with one another. The mutual information ana-
lyzer is used to reduce the number of features for leak-
age analysis by i) identifying features that share most
of their information with other features and are thus re-
dundant, and ii) clustering features that show moderate
levels of redundancy. For further details, please refer to
the paper by Li et al. [21].

Results. First, we perform an analysis of the leakage
of individual features, with results shown in Figure 6.
We find that features in the Packets per Second category

Table 4. Joint information leakage of Undefended and WTF-PAD
datasets. (* represents our features).

Feature Category
Leakage (bits)

Undefended WTF-PAD
Pkt. per Second 6.56 6.56
Time Statistics 5.92 4.68
MED* 5.43 4.75
IBD-OFF* 4.38 3.68
IBD-IFF* 4.28 3.71
IBD-FF* 3.88 3.51
IMD* 3.87 3.45
Variance* 3.30 1.69
Burst Length* 3.22 1.66
IBD-LF* 3.13 1.66

appear most significant. The highest amount of leakage
from any one feature was 2.97 bits. The distribution of
leakage values can be summarized as: only 5% of fea-
tures leaked more than 1.52 bits of information, 75% of
features leaked less than 1.30 bits, and 50% of features
leaked no more than 0.69 bits. In general, the informa-
tion leakage of most individual timing features is low.

Next, we use both components of WeFDE to esti-
mate the information leakage of each feature category,
which are depicted in Table 4. For this experiment, we
use the same values for the clustering threshold (0.40)
and redundancy threshold (0.90) as used by Li et al [21].
When calculating the redundancy value of features pair-
wise, we found that most features have little shared in-
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Table 5. Closed World: Comparison of our hand-crafted Timing Features with k-FP Timing Features.

Dataset
Random Forest Deep Fingerprinting

k-FP [12] Our (§ 4.1) k-FP + Our k-FP [12] Our (§ 4.1) k-FP + Our

Undefended 87.4% 69.4% 87.3% 89.4% 84.3% 91.4%
WTF-PAD 69.3% 42.1% 69.5% 74.0% 56.1% 74.0%
Walkie-Talkie (sim.) 76.8% 70.0% 80.7% 80.3% 80.8% 80.5%
Onion Sites 36.3% 20.0% 35.5% 33.0% 12.8% 33.6%

formation, i.e. they have low redundancy. Because of
this, the majority of timing features do not fall into a
cluster and are thus modeled as independent variables
during the information leakage analysis. The results of
our feature redundancy and clustering analysis is shown
in Figure 7. We found that just 40 of the 310 timing
features are redundant with at least one other feature.
Redundant features most often belonged to the Burst
Length, Variance, and IBD-LF categories. In addition,
only 32 of the 270 non-redundant features could be clus-
tered into five groups. The clusters primarily formed in
the previously defined timing feature categories; none of
our feature categories formed clusters.

As a result of this clustering behavior, we find that
the joint leakage estimates for each category are signif-
icantly higher than what the individual leakage results
would lead us to anticipate. We find that the category
that leaks the most information is Packets per Second
at 6.56 bits. The highest leakage for any of our new fea-
tures is MED at 5.43 bits. Overall, the low redundancy
and consequently higher combined leakage of timing fea-
tures is a good indicator that even minor features add
value to the robustness of the classifier.

6.5 Comparison of Timing Features with
Prior Works

Table 5 shows a comparison between the performance
of our features and k-FP [12] timing features on our
datasets. We also examine the features’ performance
with two classifiers: the k-FP Random Forest classifier
and the DF model. Our Random Forest (RF) classifier
uses the same parameters as the k-FP RF classifier, but
with adjusted feature sets. The DF model follows the
design described in Section 6.

We see that our features provide less classification
value than the packets-per-second and other timing fea-
tures of k-FP. When our features are combined with
k-FP features and used in the RF classifier, we see no
noticeable improvement. However, when the combined

features are instead used as inputs for the DF model,
we see a small accuracy improvement of 2% for the un-
defended dataset, indicating that DL is slightly more
effective at leveraging the additional information pro-
vided by our features. This reinforces the results from
Section 6.4, which showed that our features capture
different, but related timing information from features
studied in prior works.

6.6 Raw Timing Information

From the previous section, we see that using a combi-
nation of timing features enables a reasonably effective
WF attack using traditional ML and especially when
using DL. It is well known that one of the major ad-
vantages of using DL is end-to-end learning, in which
the classifier can directly learn from the raw input, and
this has been shown to provide better performance com-
pared to traditional ML with hand-crafted features [34].
Thus, we explore how WF attacks, especially with DL,
could effectively perform the attacks by using only raw
packet timing.

In our experiments, we extracted the raw timing in-
formation from our datasets and fed them to train a WF
classifier using the DF Model. We use stratified k-fold
cross validation with k = 10 to obtain standard devi-
ations for better comparison between attacks. Against
the Undefended dataset, the attack attains 96% accu-
racy, while against the WTF-PAD dataset, it reaches
86%. For simulated W-T, the attack reaches 73%, but
with a very high variance. Most interestingly, on the
Onion Sites dataset, we get 13% higher accuracy us-
ing only timing information compared with using only
direction information (see Table 6).

As with DL in other domains, WF attacks using DL
trained with only timing information have better accu-
racies compared to our hand-crafted timing features. In
the Undefended and WTF-PAD datasets, the attack’s
respective accuracies improved by 10-25%. For Onion
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Table 6. Closed World: Accuracy for each attack in different datasets. Error ranges represent standard deviation.

Dataset Direction [32] Timing Features (§ 6.3) Raw Timing (§ 6.6) Directional Time (§ 6.7)

Undefended 98.4±0.1% 84.3% 96.5± 0.3% 98.4±0.1%
WTF-PAD 91.0± 0.2% 56.1% 85.9± 0.6% 93.5±0.7%
Walkie-Talkie (sim.) 47.6±0.5% 80.8% 73± 20% 97.0±0.2%
Onion Sites 53± 1% 12.9% 66±1% 64.7±0.9%

Table 7. Real-world W-T: Accuracy for each attack against the real-world Walkie-Talkie dataset.
Combined: both monitored and unmonitored sites included in the test dataset.
Monitored & Unmonitored: the test set includes only the respective instances.

Testing Data Direction [32] Raw Timing (§ 6.6) Directional Time (§ 6.7)

Combined 73.20± 11.9% 59.04± 10.3% 73.33± 11.7%
Monitored 40.53± 31.7% 44.92± 26.2% 41.59± 32.2%
Unmonitored 95.08± 2.5% 71.97± 21.2% 94.28± 3.44%

Sites, we find over 50% improvement. Overall, our re-
sults suggest several takeaways:
– Using end-to-end learning with the only timing data,

the WF classifier can effectively and directly learn
more information from the input than the timing
features we propose, leading to higher classification
performance.

– Even if the only timing data is noisy, the timing
information leaves fingerprintable information that
can be effectively extracted by DL.

– Even if an attacker cannot use direction informa-
tion because of distortions in patterns caused by a
defense, she can still use timing information for an
effective attack.

6.7 Directional Time

Since prior work [4, 30, 32] has shown that packet direc-
tion is a powerful data representation for WF attacks,
it should also be considered when using timing informa-
tion. We evaluated different methods to combine timing
and direction, such as using timing features and direc-
tion together, raw timing and direction together, and
directional time. We find that directional time provides
the most effective results.

With the directional-time data representation, we
experimented with WF attacks (again using 10-fold
cross validation) and show the key results in Table 6.
Using directional time provides slightly higher accuracy
than that of either using only direction or only raw tim-
ing in the Undefended dataset. Impressively, the attack

against WTF-PAD can attain 93.4% accuracy which is
higher than that of either direction or raw timing. In
the Onion Sites dataset, directional time has 12% higher
accuracy than using only direction information, slightly
lower than using only raw timing information. Finally,
directional-time performs very well against simulated
W-T achieving 97% accuracy and is able to completely
undermine the defense.

6.8 Real-world W-T Evaluation

Table 7 presents attack performance when evaluated
against our new real-world W-T dataset, which is de-
scribed in Section 5.2. We present this experiment sepa-
rately from both the closed-world and open-world exper-
iments, as the performance from this experiment cannot
be compared in a straightforward manner. This dataset
contains monitored and unmonitored site instances at
an equal proportion (35K instances each). The goal of
the classifier in this experiment is to both a) determine
if the visited instance is from the monitored or the un-
monitored set, and b) to determine which exact site was
visited if belonging to the monitored set. To this end, we
train our classifiers on data containing both the moni-
tored and unmonitored instances, and we test on either
exclusively monitored traces, exclusively unmonitored
traces, or both together. If the defense works completely
as intended, the combined test set should yield at most
50% accuracy, as the classifier should confuse site pairs
with one another.
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Table 8. Open World: Tuned for precision and tuned for recall. D:
Direction, RT: Raw Timing, DT: Directional Time.

Dataset
Tuned for Precision Tuned for Recall
Precision Recall Precision Recall

Undefended
D 0.991 0.938 0.932 0.985
RT 0.969 0.922 0.857 0.980
DT 0.988 0.948 0.908 0.989

WTF-PAD
D 0.961 0.684 0.667 0.964
RT 0.972 0.609 0.640 0.942
DT 0.979 0.745 0.740 0.957

Results. We see in Table 7 that, empirically, our W-T
implementation does not provide the ideal results. The
average accuracy for the combined test set is greater
than 50% for each of our three tested attacks. When ex-
amining our implementation and output data, we find
that the cause of this shortcoming is the difficulty in
exactly matching the target burst sequence when per-
forming bust molding on the live network. Consequently,
some information regarding the true class instance is
leaked that allows the classifier to better distinguish be-
tween the true site and paired site. We discuss why our
burst molding fails in more detail in Appendix C.

In addition, we found that the training of the model
was very unstable, with a high standard deviation be-
tween trials for all trace representations. This shows
that while a practical implementation of W-T can not
achieve ideal performance, the defense still significantly
hampers the reliability of the classifier. We also see that
direction and directional time representations achieve
nearly identical results.

6.9 Open-World Evaluation

Having explored the quality of our models and made
baseline comparisons of attacks in the closed-world set-
ting, we now evaluate the attacks in the more realistic
open-world setting.

The performance of the attack is measured by the
ability of the WF classifier to correctly recognize un-
known network traffic as either a monitored or an un-
monitored website. True positive rate (TPR) and false
positive rate (FPR) have been commonly used in eval-
uating WF attacks and defenses in the open-world set-
ting [12, 30, 35]. These metrics, however, could lead to
inappropriate interpretation of the attacks’ performance
due to the heavy imbalance between the respective sizes
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Fig. 8. Open World: Precision-Recall curves. Note that both axes
are shown for 0.5 and above.

of the monitored set and unmonitored set. Thus, as
recommended by Panchenko et al. [27] and Juarez et
al. [15], we use precision and recall as our primary met-
rics.

We trained the WF classifier by using the DF at-
tack [32] as the base model with different data rep-
resentations in both the Undefended and WTF-PAD
datasets, including direction, raw timing, and directional
time. We did not evaluate the W-T defense in the open-
world setting, as it remains a major challenge to obtain
an open-world W-T dataset (see Appendix D).

Finally, we note that the attacks can be flexibly
tuned with respect to the attacker’s goals. If the at-
tacker’s primary goal is to be highly confident that a
user predicted to be visiting a monitored site truly is
doing so, the attack should be tuned for precision, re-
ducing false positives at the cost of also reducing true
positives. On the other hand, if the attacker’s goal is to
widely detect any user that may be visiting a monitored
website, the attack will be tuned for recall, increasing
true positives while accepting more false positives.

Results. Figure 8 shows precision-recall curves for the
attacks in the open-world setting, while Table 8 shows
the results when the attack is tuned for precision or
tuned for recall. For the Undefended datasets, the re-
sults show that all data representations can effectively
be used to attain high precision and recall. The attacks
consistently performed best on the direction and direc-
tional time data representations, with 0.99 precision and
0.94 recall when tuned for precision. Timing alone, how-
ever, is also very effective.

On all three WTF-PAD datasets, we see reduc-
tions in both precision and recall. Nevertheless, all three
datasets show over 0.96 precision and 0.60 recall when
tuned for precision. Interestingly, Figure 8 shows that
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Table 9. Closed World: Evaluation of Slowest & Fastest Circuits.
D: Direction, RT: Raw Timing, DT: Directional Time.

Dataset
Slowest Circuits as Test Set Fastest Circuits as Test Set
D [32] RT DT D [32] RT DT

Undefended 92.90% 82.30% 92.20% 93.80% 82.50% 94.40%
WTF-PAD 68.40% 42.80% 71.10% 69.20% 44.20% 74.10%
Onion Sites 47.20% 52.90% 53.50% 41.30% 47.10% 40.60%

directional time outperforms direction on WTF-PAD
data. Timing information appears to improve classifi-
cation of monitored versus unmonitored sites for traffic
defended with WTF-PAD.

6.10 Impact of Congestion on Circuits

Even though we split training, validation, and testing
sets based on circuits as described in Section 6.2, there
can be situations where the victim has a much different
circuit than the ones used by the attacker for training
the classifier. In particular, circuit congestion might be
expected to especially impact timing features. To inves-
tigate this, we perform two types of experiments: i) the
slowest 10% of circuits as the testing set, and ii) the
fastest 10% of circuits as the testing set. These exper-
iments model the scenario in which the attacker trains
on a broad range of circuits (the other 90% of the data),
but the victim has an unusually slow or fast circuit, re-
spectively. To split off the slower and faster circuits for
a given monitored site, we rank the circuits based on
the mean page load time among the page load times
for that site. The mean page load time (in seconds) of
the fastest and slowest four circuits of site 0 in our Un-
defended dataset are [7.21, 7.37, 7.38, 7.40] and [9.34,
9.50, 10.37, 10.48], respectively (see Figure 9 for the
whole distribution).

Among all sites in the Undefended dataset, the me-
dian gap in page load time between the fastest and
slowest circuits for the site was 5.11s (15.79s slow and
10.68s fast), showing a substantial difference in the typ-
ical case. For the Onion Site dataset, the median gap
was much higher, at 15.69 (20.32s slow and 4.63s fast).
Some Onion Site circuits can be very quick, likely due
to not needing to use exit nodes, which can be highly
congested.

We perform these experiments with Undefended,
WTF-PAD, and Onion Sites datasets. The Undefended
and WTF-PAD datasets each contain 40 circuits with
25 visits in each circuit. We take the data from the slow-

Fig. 9. Distribution of mean circuit page load time for site 0
(Undefended dataset). Y-axis starts from 7.0.

est or fastest four circuits as the test set and evenly split
the rest of the 36 circuits into training and validation
sets. For the Onion Sites, each visit is from a different
circuit, so we take the 10% of the slowest or fastest cir-
cuits as the test set and the rest of the 90% circuits as
the training and validation sets.

Results. As Table 9 shows, attack accuracies are lower
in all scenarios for all datasets. Interestingly, direction is
impacted almost as much as raw timing and directional
time attacks (and in some cases more so), indicating
that differences in circuit speed impact burst patterns
significantly, not just timing patterns. In most cases,
testing with the slowest circuits harms accuracy less
than training with the fastest circuits. The exception
is for the Onion Sites, where the fastest circuits can be
much faster than slower ones, leading to confusion for
the attacker.

7 Discussion
In this section, we discuss the reasons why WTF-PAD
and W-T have their respective levels of vulnerability to
leaking timing information.

WTF-PAD Defense. To better understand why tim-
ing information improves attack performance in WTF-
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PAD, we further examined the information leakage of
timing features, as shown in Table 4. Leakage is reduced
for all feature groups except the Packet per Second
category, but some feature categories like MED have
minimal reduction. This indicates that the classifier is
still able to find valuable information in the timestamps
of the real bursts. This intuitively makes sense as the
timestamps of real bursts are unaffected byWTF-PAD’s
zero-delay adaptive padding. The classifier thus needs to
only learn to distinguish between the timings of real and
fake bursts to improve classification performance.

W-T. In Section 6, we showed that W-T leaks a large
amount of information from packet timestamps in the
simulated setting, leading to high classification accura-
cies. This is because the simulated dataset can mold
bursts without affecting timestamps of real packets,
leaving substantial timing information unchanged. We
found, however, a discrepancy in performance between
our simulated and real-world testing. This is likely due
to the compromises that needed to be made when prac-
tically implementing burst-molding in Tor. A side-effect
of our implementation is that inter-burst packet timing
variance is virtually eliminated and intra-burst timing
variance is reduced (see Appendix B for implementa-
tion details). Consequently, the value of timing infor-
mation is significantly lessened. We also note, however,
that as a consequence of difficulties in implementing
burst molding, directional information is leaked which
has led to improved performance of directional informa-
tion against our prototype.

8 Conclusion
In this study, we investigated the use of timing infor-
mation as a source of features to perform effective WF
attacks on Tor. We proposed eight new burst-level tim-
ing features that help illustrate how timing can be re-
liably used to fingerprint sites. Through experiments
with machine-learning and deep-learning classifiers, we
show that these features are robust over multiple noisy
instances and provide meaningful classification power.
Furthermore, we show that these features have low re-
dundancy with previous studied features based on tim-
ing.

Since we found that a range of timing features are
relevant for website fingerprinting, we then explored the
capability of deep-learning classifiers to extract and use
features such as these. First, we show that based only on
timestamps and ignoring packet direction, an attacker

can achieve surprisingly good results, such as 96% accu-
racy on the Undefended dataset. Moreover, we proposed
the use of directional timing, formulated by taking the
product of timing and direction data, and we show that
this improves the performance of the attack over us-
ing just direction or just timing in most settings in the
closed world. For example, on Onion Sites, directional
timing is 12% more accurate than direction alone.

In more realistic open-world experiments on unde-
fended traffic, using directional timing information, the
attack attains 0.99 precision and 0.95 recall. Against
WTF-PAD, it reaches 0.98 precision and 0.75 recall.
These are modest improvements in attack performance
when compared to using only directional information.

In summary, our study shows that timing informa-
tion can be used as an additional input to create an
effective WF attack. Furthermore, these findings show
that developers of WF defenses need to pay more at-
tention to timing features as another fingerprintable at-
tribute of the traffic. Timing information seems to affect
defenses in ways that are hard to predict, so both eval-
uating with our attacks and performing feature-based
leakage analysis are important steps in understanding
if a defense is sound.
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A W-T Data Collection
In order to accurately evaluate a defense against our
timing-based attack, we require a dataset that contains
realistic timestamp information. At the time the Walkie-
Talkie (W-T) defense was proposed, Wang et. al. did
not consider attacks using timing as a credible threat
against Tor traffic [37]. As such, their defense simulator
did not calculate the timestamps of dummy packets in a
realistic manner. To address this gap, we have developed
a prototype of the W-T defense specification that runs
directly on the Tor network, rather than simulating the
padding.

The W-T prototype is designed as a Tor Pluggable
Transport (PT) module, as an extension of the WFPad-
Tools Framework [3]. We developed our own implemen-
tation of the W-T padding algorithm to use in this PT.
The PT is deployed on both the client and the guard
node.1 Figure 10 shows how the W-T PT operates in the
context of the Tor network. Our prototype is intended
to be used in tandem with the Tor Browser Bundle con-
figured with the half-duplex patch used in Sirinam et
al.’s evaluation of W-T [32].

It is important to note that we have deployed our
defense prototype on the Tor Guard node since we are
primarily interested in evaluating the performance of
the padding mechanism. This deployment is vulnera-
ble to a malicious guard node. A practical deployment
would ideally be done on the middle node so that the
security of the system is not so heavily dependent on
the trustworthiness of the Guard. However, this style of
deployment could not be done through a PT and would

1 The WFPadTools Framework operates on a Tor bridge node,
but we have the bridge act as a guard so as to not add a node
to the length of the circuit.

Fig. 10. Walkie-Talkie Prototype Deployment.

instead need to be implemented directly into the Tor
network code.

A.1 W-T Dataset

Using our W-T prototype, we performed a new crawl of
100 monitored websites to collect a new W-T dataset.
The W-T defense creates pairs between two or more dif-
ferent websites and performs padding to make the two
sites look the same in terms of their packet sequence.
Wang and Goldberg’s dataset keeps the pairings the
same for the full dataset. Unfortunately, this does not
accurately model the attack. While a client should in-
deed use the same pairings all the time, the attacker
should not know what those pairings are in advance.

Consequently, an attacker cannot train on a dataset
that contains only the correct pairings. The attacker
must instead train on many possible pairings of real
and decoy sites. With this understanding, we designed
our real-world crawl. We first sampled a list of mon-
itored and unmonitored websites from the Alexa Top
websites. We use the top 100 sites for our monitored
sites and sample 10,000 sites from the top 14,000 for our
unmonitored set. We next randomly generated pairings
between the monitored and unmonitored sites such that
each new sample to be collected is composed of a new
pair. When we collect our samples, we generate one visit
for both the sites in each pair such that samples for both
the real site sequence and decoy site sequence are rep-
resented. Based on the W-T defense, a client chooses
the decoy site. In a realistic setting, the paired traffic
between the actual website and the decoy can be vari-
ously different among different users. Hence, an attacker
needs to train the classifier with traffic paired with va-
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http://www.cs.unc.edu/techreports/18-001.pdf


Tik-Tok 22

riety of other sites. In this way an attacker can test on
W-T traffic of any user.

Our crawl was performed using a modified variant
of the Tor Browser Crawler [1] so as to accurately rep-
resent the browsing behavior of the Tor Browser Bun-
dle. The crawlers were configured to use version 7.0.6
of the Tor Browser Bundle, patched so as to operate in
half-duplex mode. We deployed our W-T defense proto-
type as Tor guards on virtual private servers hosted by
Amazon Web Services. Our crawlers were then config-
ured to connect to these servers as their guards. We col-
lected our data in batches in which each site was visited
once. Between each batch, the decoy site to which each
real site was paired was changed, following the pairing
scheme discussed previously.

B W-T Prototype Design
Designing and developing an experimental prototype of
W-T led us to face many issues that are important to
understand when designing WF defenses for Tor, and
we address these in this section.

Burst Identification. ImplementingW-T padding re-
quires the defense to know which burst the stream is
currently on so it knows how much padding is required.
So it is necessary to correctly identify when a new W-
T burst had begun. It is however difficult for the co-
operating Tor node to know when the current burst
coming from upstream has ended. We solve this by im-
plementing a half-duplex communication mechanism in
the PT. The PT allows only one side to send data at
any given time. Additionally, time thresholding is used
to identify when the current burst has ended. If no pack-
ets are seen after a certain amount of time, the current
burst is determined to be over. This information is then
signalled to the other side of the connection by piggy-
backing a control message onto the last message in the
burst. These mechanisms allow both the client PT and
guard PT to remain synced to the current position in
the burst sequence.

Padding. The next decision to be made is when to
send the dummy packets in burst. If we send the dummy
packets at the start of the burst as Wang and Goldberg
describe in [37], we must assume knowledge of the real
burst beforehand. In practice, we found this results in
many errors as the true burst sequence changes between
visits. Instead, we opt to send data in a burst all at once
by keeping outgoing packets in a queue until the burst

ends. This provides two benefits: 1) the number of neces-
sary dummy packets to add can be accurately computed
using the true burst size, and 2) the inter-burst packet
timings become nearly identical and the authenticity of
a packet cannot be distinguished by timing discrepan-
cies.

Tail Padding. Fake bursts need to be added to the
trace when the real burst sequence is shorter than the
burst sequence of the decoy site. The W-T specification
gives no guidelines as to when in the burst sequence to
add these bursts. For our implementation, we simply
add the fake bursts at the end of the real communica-
tion, which we identify based on when the Tor browser
closes its connection to the proxy application.

B.1 Limitations of the Implementation

Burst Identification. Our burst identification pro-
cess works well so long as packets in a burst do not
have timing differences greater than the threshold. Un-
fortunately, very large timing threshold cannot be se-
lected without also inducing additional an additional
latency overhead. Furthermore, if the time threshold is
too small, the threshold may expire before any packets
in the next burst have arrived. This is most likely to oc-
cur on the co-operating Tor node as there may be several
hops worth of distance for packets to travel before reach-
ing and arriving from the end website. These problems
can be reduced by configuring different time thresholds
for different scenarios and tuning (eg. we don’t allow the
burst to end if packets have yet to arrive unless a much
larger time threshold expires). However, discrepancies
will always exist and the PT will occasionally incor-
rectly end bursts. When this happens, the traffic may
be segmented into more bursts than necessary which
can result in the trailing portion of the traffic to receive
less padding than it otherwise would if decoy sequence
is smaller than the real site.

Overheads. The overhead of our W-T implementation
is heavily dependent on two factors: (1) the burst seg-
mentation time threshold, and (2) the scheme used for
pairing sensitive and non-sensitive sites. For our data
collection, we used a large time threshold of 300ms in
order to minimize the number of occurrences in which
a burst is ended early. Furthermore, we made no at-
tempt to optimally pair sites of similar lengths. As a
consequence of this, we see high bandwidth and latency
overheads when compared to their reference sequences.
When find that packet overheads average 2.21 ± 1.22
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times the original sequence and time overheads average
10.13 ± 6.48 times. In practice, these overheads likely
can be reduced by more optimally pairing similarly sized
traces and by tuning the time threshold to the minimum
value that still segments burst with reasonable accuracy.

Padding. In Appendix A we presented a padding
scheme that allows our prototype to reliably manipulate
a burst sequence to match a target sequence by comput-
ing the necessary number of padding packets on the fly.
This scheme however has a limitation. Dummy packets
can only be added to increase the size of a burst, real
packets cannot be dropped without causing communi-
cation errors. Consequently, in instances where dynamic
content or burst identification errors yield larger than
expected burst sizes, the burst size cannot be manip-
ulated to match a smaller target size in this scheme.
This will inevitably result in leaks of information that
a classifier may use to better distinguish between real
and decoy sites.

Tail Padding. As described in Appendix A, the W-T
specification does not indicate at what point the defense
should create a fake burst. The difficulty of adding a
fake burst is that the timing of the packets within the
burst and between bursts should resemble that of real
bursts. Otherwise, the attacker needs only to identify
and filter out likely fake bursts to greatly improve their
classifier’s performance. This issue is magnified if the
fake bursts are left until the real traffic ends, as done
in our implementation. If the attacker can identify one
fake burst the attacker can prune the trace to the last
suspected real burst.

C W-T Experimental Results
The experimental results show that W-T is in practice
weaker than the 50% maximum attacker accuracy it
claims to guarantee [37]. The cause of this discrepancy
is the defender’s inability to perfectly manipulate the
traffic they produce to match their target pairing.

We note that both the original W-T dataset cre-
ated by Wang and Goldberg and the dataset developed
by Sirinam et al. used traces of half-duplex network traf-
fic and simulated the padding [32, 37]. Given this con-
trolled and simulated condition, the traffic from the two
websites can be formed into a supersequence via an al-
gorithm that is strictly followed without dealing with
other factors, such as the usual variance in burst se-
quences between site loads, the effect of padding on the

network connection, and the processing time on the Tor
nodes.

In contrast, our W-T dataset was directly crawled
from our W-T prototype, which was built to work with
padding on the Tor network. This not only allowed us to
evaluate W-T with realistic timestamps, but also uncov-
ered the issues discussed in Appendix B.1. The instance-
to-instance changes we observed in the traces would
have led to different burst sequences than expected by
the algorithm, exposing fingerprints that could be de-
tected by the DF classifier. We note that W-T still main-
tains a lower classification accuracy than WTF-PAD
when tested against our attacks, so it appears that the
supersequence-based padding may still be more desir-
able.

The effects we find from realistic conditions raise
the questions about the actual performance of defenses.
While simulated padding is useful for gathering an ini-
tial idea about a defense’s effects, padding should be
evaluated experimentally before confident judgments
can be made about its design.

D Open World Challenge of W-T
The fundamental concept of W-T in the open-world set-
ting is to attempt to confuse the classifier by creating a
supersequence between a monitored website and an un-
monitored website [37]. This simple idea, however, is not
easily implemented nor tested for a few main reasons:
– Since each attacker selects his own monitored set,

we cannot expect to know what the monitored sites
are. Supposing that the W-T algorithm pairs some
sites that are more likely to be monitored (sensitive
sites) with those that are less likely (non-sensitive
sites), one must still test how attacks perform when
the attacker monitors sensitive sites, non-sensitive
sites, and a mix of both.

– Each user may have a different idea of what sites
are sensitive and not sensitive and should be paired
together. If pairing is random, a sensitive site might
be paired with a particularly unlikely decoy site,
greatly reducing its effective protection. So finding a
good approach to pairing sites is an open challenge.

– When W-T pairs a real site A and an decoy site B,
this pairing must be kept the same for all future vis-
its of site A. Otherwise, the attacker will see site A

paired with different sites and can eventually infer
that A is being visited, while the other sites are de-
coys. Further, the pairing must be symmetric, such
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that if the user actually visited the decoy site B,
the site A must be selected as its decoy. This could
be achieved by locally storing the mapping of de-
coy and real sites, but this would need to be done
carefully to avoid leaving a record of the user’s Tor
activity on the client. Alternatively, every possible
site the user could visit could be paired up in ad-
vance, but this an enormous list of sites. Note that
W-T also requires a database of traffic traces for
every possible site, so it is already a problem before
pairing is considered.

These issues must be carefully addressed before a real-
istic study of W-T in the open-world setting could be
conducted. Furthermore, the issues with the site-pairing
algorithm remain major problems to address before W-
T could be deployed.


